EVALUATING THE COSTS AND CREDIT MARKET DYNAMICS OF OREGON'S CLEAN FUELS PROGRAM

Insights from the Oregon Clean Fuels Program for Sustainable Development

(Chukwuemeka Valentine Okolo, Andres Susaeta, Mindy Crandall, John Sessions)

Western Forest Economist Annual Meeting May 15 - 16 in Seattle, WA

COLLEGE OF FORESTRY

Sustainable Forest Management Department of Forest Engineering, Resources & Management

AGENDA

01	<u>Introduction</u>	07	<u>Implemer</u>
02	Problem	08	<u>Results</u>
03	<u>Literary Review</u>	09	<u>Analysis</u>
04	Framework	10	Recomme
05	<u>Hypothesis</u>	11	<u>Conclusio</u>
06	<u>Methodology</u>	12	Future R

ntation

endations

Ŋ

<u>esearch</u>

INTRODUCTION

- Climate change Development of policies -reduce GHGs.
 - Oregon's Clean Fuels Program (CFP) in 2016 0
- Statewide market-based incentive program
 - Low-carbon fuel adoption through credit generation and trading for 0 surpassing CI benchmarks

INTRODUCTION

Goals of the Oregon Clean Fuels Program

• Reduce the CI of transport. Fuels by 10% (2015–2025).

- Encourage the use of:
 - Biofuels: Ethanol, biodiesel, renewable diesel
 - Electricity: EV charging incentives
 - Renewable Natural Gas (RNG) & Hydrogen

INTRODUCTION

HOW THE OREGON CLEAN FUELS PROGRAM WORKS

Set Carbon Intensity (CI) Targets Oregon DEQ sets annual CI reduction targets

> **Fuel Suppliers Report CI Values** Fuel producers/importers report fuel carbon intensity.

Clean Fuel Providers Generate Credits Low-carbon fuel suppliers earn credits below CI target.

Deficit Holders Buy Credits High-CI fuel suppliers must buy credits to offset excess.

> Credit Trading Market Balances Compliance Market-based credit trading enables flexible compliance.

> > **Oregon DEQ Monitors & Enforces Compliance** Ensures accurate reporting and enforces compliance.

> > > **Reduced Transportation Emissions** Program outcome: lower GHGs and cleaner air.

INVESTIGATING THE EFFICIENCY OF OREGON CFP IN CI REDUCTION

This study aims to explore the relationship between Cost of Oregon's CFP, credit markets and CI reduction as Manage by the Sate DEQ

Supplier and Demander Equations

 $D(P) = \alpha - \beta P + \lambda(Cost of Emissions Reductions)$

$$S(P) = \Upsilon + \delta P$$

Market Clearing Reduced-Form Equation

$$\alpha - \beta P^* + \lambda(Cost of Emis)$$
$$P^* = \frac{\alpha - \Upsilon + \lambda(Cost of)}{P^*}$$

$$CI = \theta - \phi P + k(Low - C)$$

Framework

ssions Reductions) = $\Upsilon + \delta P^*$

f Emissions Reductions)

 $\beta + \delta$

CI Fuel Production)

 $CI = \theta - \phi P + k(Low - CI Fuel Production) + \gamma Z + \epsilon$

PRE-TEST & METHODOLOGY

Stationarity Test

Augmented Dickey-Fuller (ADF)

Test

• Phillips–Perron (PP) Test

 Quantile model (different distribution points (quantiles))

•Fully Modified Ordinary Least Squares (FMOLS)

Regression Techniques

Ordinary Least Squares (OLS)

ARCH model (non-constant error variance)

$CI_{ava} = \gamma_1 + \gamma_2 S_t + \gamma_3 D_t + \epsilon_t$ **Mean Equation**

 $Q_T(CI_{ava} \setminus X) = \gamma_1 + \gamma_2 S_t + \gamma_3 D_t + \epsilon_t$

 $CI_{avg} = \gamma_1 + \gamma_2 Ave \ CFP \ Cost_t + \gamma_3 Bioenergy + \gamma_4 Total \ Credits_t$ EMPIRICAL $+ \gamma_5 Low Carbon Transport_t + \epsilon_t$

TECHNIQUE

 $CI_{ava} = \gamma_1 + \gamma_2 Ave CFP Cost_t + \gamma_3 GBioenergy + \gamma_4 Total Credit Value_t$ $+ \gamma_{\exists}Low Carbon Transport_{t} + \epsilon_{t}$

 $CI_{ava} = \gamma_1 + \gamma_2 Ave \ CFP \ Cost_t + \gamma_3 Bioenergy + \gamma_4 Avg \ Price \ per \ Credit_t$ $+ \gamma_5 Low Carbon Transport_t + \epsilon_t$

 $CI_{ava} = \gamma_1 + \gamma_2 Ave CFP Cost_t + \gamma_3 Bioenergy + \gamma_4 Credits Transferred_t$ $+ \gamma_{\pm}Low Carbon Transport_{\pm} + \epsilon_{\pm}$

DATA AND VARIABLES

Variables	Abbreviation	Definition
Ethanol CI	CI	Measures the grams of CC megajoule (gCO2e/MI)
Bioenergy	BIO	State-level innovation indetechnologies.
Total Credits	TC	Total number of emission generated or traded within
Total Credit Value	TCV	The total monetary value of within Oregon CFP.
Credits Transferred	СТ	Total credits transferred be the market.
Avg Price Per Credit	APPC	The average market price in the Oregon CFP.
Low-Carbon Transport	LCT	Innovation index in low-ca technologies.
Avg B5 CFP Cost	AB5C	Average compliance cost f under CFP.
Avg E10 CFP Cost	AE10C	Average compliance cost t under CFP.

- O2 equivalent per
- ex in bioenergy
- reduction credits n CFP. of credits traded
- etween parties in
- for credits traded
- arbon transport
- for B5 biodiesel
- for E10 ethanol

Units

gCO2e/MJ

Index score

Number of credits

USD

Number of credits

USD

Index score

USD USD

EIVIPIRICAL ANALY 313													
	BASELINE	ESTIMAT	ION RESU	JLTS	111111000								
ugmented Dickey-Fuller Test for Stationarity (Unit Roots)													
Variable	Test Statistic	1% Critical	5% Critical	10% Critical	p-value								
		Value	Value	Value	· ·								
CIR 1(1)	-10.023	-3.518	-2.895	-2.582	0.0000								
BIO 1(1)	-9.598	-3.518	-2.895	-2.582	0.0000								
TC 1(1)	-13.872	-3.511	-2.891	-2.580	0.0000								
TCV 1(1)	-13.435	-3.511	-2.891	-2.580	0.0000								
APPC 1(1)	-9.714	-3.516	-2.893	-2.582	0.0000								
CT1(1)	-12.052	-3.516	-2.893	-2.582	0.0000								
LCT 1(1)	-9.615	-3.518	-2.895	-2.582	0.0000								
AB5C 1(1)	-9.555	-3.535	-2.904	-2.587	0.0000								
AE10C 1(1)	-9.559	-3.535	-2.904	-2.587	0.0000								

COLLEGE OF FORESTRY

1.1.1.1.1.1

PHILLIPS-PERRON TEST FOR STATIONARITY (UNIT

Phillips-Perron Test for Stationarity (Unit Roots)

1 mmps-1 eno	11 1051 101	Stational	ny (Omr I	(COUS)					
Variable	Test Statis	tic	1% Critic	al Value	5% Critica	al Value	10% Criti	cal Value	p-value
	Z(rho)	Z(t)	Z(rho)	Z(t)	Z(rho)	Z(t)	Z(rho)	Z(t)	
CIR 1(1)	-93.476	-10.054	-19.692	-3.518	-13.652	-2.895	-10.964	-2.582	0.0000
BIO 1(1)	-94.013	-9.597	-19.692	-3.518	-13.652	-2.895	-10.964	-2.582	0.0000
TC 1(1)	-103.827	-18.045	-19.782	-3.511	-13.692	-2.891	-10.994	-2.580	0.0000
TCV 1(1)	-101.212	-16.985	-19.782	-3.511	-13.692	-2.891	-10.994	-2.580	0.0000
APPC 1(1)	-72.248	-10.268	-19.728	-3.516	-13.668	-2.893	-10.976	-2.582	0.0000
CT1(1)	-89.158	-14.589	-19.728	-3.516	-13.668	-2.893	-10.976	-2.582	0.0000
LCT 1(1)	-94.049	-9.615	-19.692	-3.518	-13.652	-2.895	-10.964	-2.582	0.0000
AB5C 1(1)	-82.327	-9.611	-19.476	-3.535	-13.556	-2.904	-10.892	-2.587	0.0000
AE10C 1(1)	-82.323	-9.616	-19.476	-3.535	-13.556	-2.904	-10.892	-2.587	0.0000

JOHANSEN TESTS FOR COINTEGRATION

Johansen tests for cointegration											
Rank	Number of	Log-	Eigenvalue	Trace	Critical	Max	Max	Conclusion			
	Parameters	Likelihood		Statistic	Value	Eigenvalue	Critical				
		(LL)			(5%)	Statistic	Value				
							(5%)				
0	130	385.17	-	114.63	68.52	56.06	33.46	Evidence of			
								cointegration			
1	139	413.2	0.51262	58.57	47.21	36.63	27.07	Evidence of			
								cointegration			

JOHANSEN TESTS FOR COINTEGRATION (RANK

Max Critical Value (5%)

JOHANSEN TESTS FOR COINTEGRATION (RANK

COINTEGRATION REGRESSION (FMOLS)

Connegration regress								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Lagged CI	0.780^{***}	0.780^{***}	0.774***	0.774***	0.779***	0.776***	0.778***	0.778***
	(0.0356)	(0.0357)	(0.0340)	(0.0340)	(0.0373)	(0.0373)	(0.0326)	(0.0326)
BIO	-0.136***	-0.136***	-0.140***	-0.140***	-0.139***	-0.140***	-0.126***	-0.127***
	(0.0403)	(0.0403)	(0.0383)	(0.0383)	(0.0421)	(0.0419)	(0.0361)	(0.0361)
LCT	-0.0101***	-0.0102***	-0.0104^{***}	-0.0104***	-0.0101^{***}	-0.0101***	-0.00917***	-0.00921***
	(0.00274)	(0.00274)	(0.00259)	(0.00258)	(0.00287)	(0.00286)	(0.00248)	(0.00248)
AB5C	-0.00269***		-0.00281***		-0.00269***		-0.00298***	
	(0.000545)		(0.000514)		(0.000572)		(0.000496)	
AE10C		-0.00306***		-0.00321***		-0.00311***		-0.00340***
		(0.000620)		(0.000585)		(0.000649)		(0.000565)
TC	-0.00162***	-0.00162***						
	(0.000429)	(0.000429)						
TCV			-0.00103***	-0.00102***				
			(0.000261)	(0.000261)				
CT					-0.00180***	-0.00180***		
					(0.000516)	(0.000514)		
APPC							-0.00270**	-0.00268**
							(0.000952)	(0.000952)
Constant	1.319***	1.322***	1.355***	1.356***	1.334***	1.348***	1.292***	1.295***
	(0.226)	(0.226)	(0.216)	(0.216)	(0.236)	(0.236)	(0.203)	(0.204)
Adjusted R2	0.95324	0.95362	0.95266	0.95266	0.95873	0.95914	0.95447	0.95448
Long run S.E.	0.00649	0.00649	0.00612	0.00612	0.00679	0.00677	0.00585	0.00585
Bandwidth	17.0138	16.7796	18.0184	17.9477	13.9830	13.4786	17.7105	17.4884
Observations	83	83	83	83	82	82	82	82

COINTEGRATION REGRESSION (FMOLS)

OLS - THE IMPACT OF AVERAGE COST OF THE CFP (B5 COST) ON CI

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Lagged CI		0.776***	RED	UC _{0.7} , ON		0.777***		0.777***
		(0.0754)		(0.0764)		(0.0758)		(0.0772)
E10	-0.707***	-0.119	-0.715***	-0.126	-0.702***	-0.116	-0.686***	-0.113
	(0.0967)	(0.0853)	(0.0957)	(0.0862)	(0.0976)	(0.0857)	(0.0972)	(0.0859)
LCT	-0.0212**	-0.00959	-0.0217**	-0.00990	-0.0211**	-0.00957	-0.0181**	-0.00872
	(0.00871)	(0.00582)	(0.00862)	(0.00583)	(0.00878)	(0.00586)	(0.00882)	(0.00591)
AB5C	-0.0125***	-0.00293**	-0.0125***	-0.00302**	-0.0125***	-0.00294**	-0.0130***	-0.00318***
	(0.00105)	(0.00116)	(0.00103)	(0.00116)	(0.00107)	(0.00117)	(0.000997)	(0.00118)
TC	-0.00408***	-0.00154*						
	(0.00116)	(0.000797)						
TCV			-0.00282***	-0.00100^{*}				
			(0.000747)	(0.000527)				
CT					-0.00442***	-0.00166*		
					(0.00128)	(0.000883)		
APPC							-0.00897***	-0.00272
							(0.00276)	(0.00193)
Constant	5.930***	1.293***	5.952***	1.327***	5.921***	1.283***	5.851***	1.264**
	(0.240)	(0.477)	(0.237)	(0.484)	(0.242)	(0.479)	(0.241)	(0.483)
F-Statistics	240.42	469.06	245.51	468.29	235.55	460.85	231.44	443.19
Probability Value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
R-squared	0.9241	0.9678	0.9255	0.9678	0.9235	0.9677	0.9223	0.9664
Root MSE	.02105	.01379	.02085	.01381	.02121	.01389	.02108	.01394
VIF	1.83	5.55	1.81	5.62	1.85	5.52	1.71	5.48
Durbin-Watson Statistic		1.8128(6,84)		1.8183(6,84)		1.8026(6,83)		1.8425(6,83)
Breusch–Godfrey LM test		1.244(0.2647)		1.190(0.2753)		1.351(0.2451)		0.766(0.3816)
Breusch–Pagan Test	0.9534	0.0017	0.9138	0.0020	0.9990	0.0018	0.8633	0.0031
White's Test	0.0040	0.0080	0.0027	0.0090	0.0046	0.0073	0.0000	0.0184
Number of Observations	84	84	84	84	83	83	83	83

OLS - THE I	MPACT	OF AVE	RAGE	COST OF '	THE CF	P (E10	COST) O	N CI
^	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Lagged CI		0.776***	REDU			0.777***		0.776***
BIO	-0.707***	-0.120	-0.714***	-0.126	-0.701***	-0.116	-0.686***	-0.113
	(0.0966)	(0.0854)	(0.0956)	(0.0862)	(0.0975)	(0.0857)	(0.0971)	(0.0859)
LCT	-0.0213**	-0.00961	-0.0218**	-0.00992	-0.0212**	-0.00960	-0.0182**	-0.00875
	(0.00870)	(0.00582)	(0.00861)	(0.00583)	(0.00877)	(0.00586)	(0.00881)	(0.00591)
AE10C	-0.0142***	-0.00334**	-0.0142***	-0.00344**	-0.0142***	-0.00334**	-0.0148***	-0.00362***
	(0.00119)	(0.00132)	(0.00117)	(0.00132)	(0.00121)	(0.00133)	(0.00113)	(0.00134)
TC	-0.00404***	-0.00153*						
	(0.00116)	(0.000797)						
TCV			-0.00279***	-0.000995*				
			(0.000747)	(0.000527)				
CT			``´´´		-0.00438***	-0.00165*		
					(0.00128)	(0.000883)		
APPC							-0.00887***	-0.00270
							(0.00275)	(0.00192)
Constant	5.928***	1.295***	5.951***	1.329***	5.919***	1.286***	5.850***	1.267**
	(0.239)	(0.478)	(0.237)	(0.484)	(0.241)	(0.480)	(0.241)	(0.484)
F-Statistics	241.12	469.06	246.15	468.29	236.27	460.88	232.07	443.21
Probability Value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
R-squared	0.9243	0.9678	0.9257	0.9678	0.9238	0.9677	0.9225	0.9664
Root MSE	.02102	.01379	.02082	.01381	.02118	.01389	.02105	.01394
VIF	1.84	5.56	1.81	5.64	1.86	5.54	1.71	5.50
Durbin-Watson statistic		1.8125(6,84)		1.8180(6,84)		1.8024(6,83))	1.8422(6,83)
Breusch-Godfrey LM test		1.251(0.2633)		1.197(0.2740)		1.357(0.2441)	0.772(0.3796)
Breusch–Pagan test	0.9387	0.0017	0.8997	0.0020	0.9834	0.0018	0.8509	0.0031
White's test	0.0038	0.0081	0.0026	0.0091	0.0045	0.0074	0.0000	0.0185
Number of Observations	84	84	84	84	83	83	83	83

ARCH	- THE IM	PACT O			E COST	OF THE	CFP ON	
CI	(1)	(2)	(3)	(4)	(3)	(0)	()	(0)
BIO	0.846***	0.846***		UCTION	0.83/***	0 825***	0.821***	0.821***
ыо	-0.040	(0.0382)	-0.845	(0.0352)	-0.834	-0.825	(0.0348)	(0.0344)
ТСТ	(0.0399)	0.0272***	0.0265***	0.0263***	0.0268***	0.0262***	0.0246***	(0.0344) 0.0247***
LCI	-0.0274	-0.0272	(0.0203)	(0.0203)	-0.0208	-0.0202	(0.0240)	(0.0247)
AD5C	0.0125***	(0.00410)	0.0128***	(0.00370)	0.0124***	(0.00404)	(0.00347)	(0.00342)
ADJU	-0.0133		-0.0136		-0.0134		-0.0137	
AE10C	(0.000422)	0.0155***	(0.000300)	0.0157***	(0.000408)	0.0152***	(0.000419)	0.0155***
ALIOC		-0.0133		-0.0137		-0.0133		-0.0155
тс	0.001.42**	(0.000433)		(0.000410)		(0.000443)		(0.000480)
IC	-0.00143	-0.00128						
TOV	(0.000337)	(0.000377)	0 000752***	0 000727***				
ICV			-0.000753	-0.000/3/				
ст			(0.000218)	(0.000219)	0 001 00***	0.00010***		
CI					-0.00162	-0.00219		
ADDC					(0.000524)	(0.000360)	0.00/07***	0.00/7.4***
APPC							-0.0068 /	-0.006/4
<u> </u>	< 077***	< 070***	< 250***	C 0 40***	C 0 47***	C 007***	(0.000955)	(0.000952)
Constant	6.277	6.2/3	6.259	6.248	6.24/	6.227	6.211	6.211
	(0.123)	(0.116)	(0.111)	(0.106)	(0.119)	(0.106)	(0.102)	(0.101)
ARCH								
Larch	1.520***	1.582***	1.636***	1.638***	1.474***	1.438***	1.507***	1.505***
	(0.343)	(0.340)	(0.330)	(0.327)	(0.335)	(0.378)	(0.339)	(0.337)
Constant	0.0000138	0.0000105	0.00000734	0.00000709	0.0000167	0.0000228	0.00000537	0.00000537
	(0.0000871)	(0.0000893)	(0.00000664)	(0.00000625)	(0.0000871)	(0.0000149)	(0.0000281)	(0.00000275)
Wald chi2(4)	13111.54	19329.25	19558.74	17691.99	10964.01	11703.63	7246.43	7122.79
Probability	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Log-likelihood	230.1127	230.2223	230.9511	231.0593	226.7829	226.7689	231.2652	231.1364
Observations	0 /	01	01	0 /	02	00	02	02

.25 QUANTILE - THE IMPACT OF AVERAGE COST OF THE CFP ON CI

.25 Quantile regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
BIO	-0.457***	-0.455***	-0.4cc* ·	0.4.5 <i>!</i> **	-0.453***	-0.451***	-0.647***	-0.646***
	(0.151)	(0.150)	(0.132)	(0.132)	(0.149)	(0.149)	(0.118)	(0.117)
LCT	-0.0101	-0.0102	-0.0125	-0.0125	-0.00949	-0.00962	-0.0479***	-0.0480***
	(0.0136)	(0.0135)	(0.0119)	(0.0119)	(0.0134)	(0.0134)	(0.0107)	(0.0107)
AB5C	-0.0152***		-0.0151***		-0.0152***		-0.0129***	
	(0.00163)		(0.00143)		(0.00163)		(0.00120)	
AE10C	5 ×	-0.0173***		-0.0172***	~ · ·	-0.0173***		-0.0147***
		(0.00185)		(0.00162)		(0.00185)		(0.00137)
TC	-0.00346*	-0.00342*				7		ъ <i>с</i>
	(0.00180)	(0.00180)						
TCV	× /	× /	-0.00250**	-0.00247**				
			(0.00103)	(0.00103)				
CT			× /	· /	-0.00346*	-0.00341*		
					(0.00196)	(0.00196)		
APPC					~ /		-0.0105***	-0.0104***
							(0.00333)	(0.00333)
Constant	5.252***	5.248***	5.283***	5.277***	5.238***	5.234***	6.050***	6.048***
	(0.373)	(0.372)	(0.328)	(0.328)	(0.369)	(0.368)	(0.291)	(0.291)
Raw sum of deviations	1.794951	1.794951	1.794951	1.794951	1.793222	1.793222	1.751402	1.751402
Min sum of deviations	.537982	.5378936	.5239388	.5240265	.5354404	.5352256	.5105647	.5107544
Pseudo R2	0.7003	0.7003	0.7081	0.7081	0.7014	0.7015	0.7085	0.7084
Number of Observations	84	84	84	84	83	83	83	83

.50 QUAN	FILE - T	HE IMP	ACT OF	AVERA	GE CO	ST OF ⁻	THE CFP	ON CI
.50 Ouantile regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
BIO	-0.768***	-0.770***	-0.7 · *	- J. / Ó *	-0.761***	-0.763***	-0.704***	-0.707***
	(0.0882)	(0.0867)	(0.104)	(0.102)	(0.0923)	(0.0932)	(0.112)	(0.111)
LCT	-0.00833	-0.00838	-0.00966	-0.00966	-0.00704	-0.00709	-0.00291	-0.00304
	(0.00794)	(0.00781)	(0.00941)	(0.00922)	(0.00831)	(0.00838)	(0.0101)	(0.0101)
AB5C	-0.0126***		-0.0130***		-0.0133***		-0.0139***	
	(0.000956)		(0.00113)		(0.00101)		(0.00114)	
AE10C		-0.0143***		-0.0147***		-0.0150***		-0.0157***
		(0.00107)		(0.00126)		(0.00116)		(0.00129)
TC	-0.00349***	-0.00345***						
	(0.00105)	(0.00104)						
TCV			-0.00152*	-0.00151*				
			(0.000816)	(0.000801)				
CT					-0.00204*	-0.00200*		
					(0.00122)	(0.00123)		
APPC							-0.00469	-0.00459
							(0.00316)	(0.00315)
Constant	5.934***	5.939***	5.952***	5.951***	5.892***	5.896***	5.725***	5.733***
	(0.218)	(0.215)	(0.259)	(0.254)	(0.228)	(0.231)	(0.277)	(0.275)
Raw sum of deviations	2.635532	2.635532	2.635532	2.635532	2.620674	2.620674	2.56403	2.56403
Min sum of deviations	.6136059	.6129506	.6056751	.6053263	.6167313	.6163539	.6045176	.6043123
Pseudo R2	0.7672	0.7674	0.7702	0.7703	0.7647	0.7648	0.7642	0.7643
Number of Observations	84	84	84	84	83	83	83	83

COLLEGE OF FORESTRY

- market

.75 QUAN'	TILE - 1		РАСТ О	FAVER	AGE CO	ST OF T	HE CFP	ON CI
.75 Quantile regression	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
BIO	-0.836***	-0.838***	-0.849***	-(1, 5)(***	-0.839***	-0.840***	-0.822***	-0.822***
	(0.115)	(0.115)	(0.119)	(0.118)	(0.116)	(0.116)	(0.145)	(0.142)
LCT	-0.00147	-0.00153	-0.00322	-0.00332	-0.00243	-0.00246	-0.00291	-0.00306
	(0.0104)	(0.0104)	(0.0107)	(0.0106)	(0.0104)	(0.0104)	(0.0132)	(0.0129)
AB5C	-0.0128***		-0.0127***		-0.0125***		-0.0133***	
	(0.00125)		(0.00128)		(0.00127)		(0.00149)	
AE10C		-0.0144***		-0.0145***		-0.0143***		-0.0152***
		(0.00142)		(0.00145)		(0.00144)		(0.00165)
TC	-0.00235*	-0.00233*						
	(0.00138)	(0.00138)						
TCV			-0.00160	-0.00157				
			(0.000928)	(0.000924)				
CT					-0.00401**	-0.00393**		
					(0.00153)	(0.00153)		
APPC							-0.00207	-0.00196
							(0.00412)	(0.00403)
Constant	6.015***	6.018***	6.061***	6.063***	6.048***	6.049***	5.987***	5.987***
	(0.285)	(0.285)	(0.295)	(0.293)	(0.287)	(0.287)	(0.360)	(0.352)
Raw sum of deviations	2.09603	2.09603	2.09603	2.09603	2.064991	2.064991	2.05525	2.05525
Min sum of deviations	.4522363	.4510645	.4509423	.4498267	.4539622	.4525811	.4505775	.4494983
Pseudo R2	0.7842	0.7848	0.7849	0.7854	0.7802	0.7808	0.7808	0.7813
Number of Observations	84	84	84	84	83	83	83	83

KEY DRIVERS OF CI REDUCTION

 Bioenergy adoption significantly contributes to CI reduction.

Low-carbon transport options play a critical role.

 Average B5 CFP cost and E10 CFP are strong indicators of Cl improvement.

MARKET-BASED MECHANISMS

 Credit transferred and total credit value reflect market activity.

Average credit prices influence stakeholder behavior.

 Financial incentives are aligned with environmental goals.

MARKET-BASED MECHANISMS

POLICY IMPLICATIONS

 Expand CFP credit opportunities for advanced biofuels with low lifecycle emissions.

 Support research and development to improve feedstock conversion efficiency and reduce production costs.

• Create targeted incentives or subsidies for biorefineries using regionally abundant feedstocks (e.g., woody

POLICY IMPLICATIONS

 Integrate fuel switching (biofuels) with vehicle electrification & public transit expansion.

 Promote infrastructure development (e.g., renewable diesel pumps, EV chargers).

POLICY IMPLICATIONS • Use average CFP credit prices as indicators of clean fuel market effectiveness.

 Ensure price transparency and stability in credit markets to attract investment.

