

Optimal Forest Management of Douglas-fir in Western Oregon: Stochastic Prices, Carbon Sequestration, and Wildfire Risk

Hsu Y. Kyaw, Andres L. Susaeta, Mindy S. Crandall
Oregon State University

Outline

Introduction

FC~48% of Oregon

65 % Douglas fir

~60,000 Jobs

\$18 billion annually

Introduction

- Forest carbon programs promote extended rotations and sustainable practices.
 - a. Oregon's Forest Carbon Offset Program
 - b. California Cap-and-Trade Program
 - c.Regional Greenhouse Gas Initiative (RGGI)
- At federal level

Conservation Reserve Program (CRP)

Environmental Quality Incentives Program (EQIP)

Provide Economic viability + Ecological benefits

Introduction (Contd)

- Wildfires threaten both economic and ecological forest values.
- Wildfire frequency and severity in Oregon have risen in recent decades (North et al., 2015).
- Fires cause economic losses and release large amounts of stored carbon (Hurteau et al., 2009).
- Classical models (e.g., Faustmann, Hartman) often overlook wildfire risk and market variability.
- There's a need for decision frameworks that incorporate both timber price uncertainty and wildfire risk in Douglas-fir forests.

Objective

• Evaluate how market dynamics and wildfire threats influence optimal harvest timing by considering timber revenue, carbon sequestration benefits, and wildfire risk in decision-making.

Use Reservation Price Approach: Represents a price that makes the landowner indifferent

between harvesting or waiting one extra year

Assumptions:

- (1) Timber prices are the only source of uncertainty;
- (2) Timber prices at different time points are statistically uncorrelated;
- (3) The landowner is risk-neutral.

Prevaling Timber Price

$$P(t) = E[P] + \varepsilon(t); \varepsilon(t); \varepsilon(t) \sim N(0, \sigma^2[P])$$

If the stand reached the maximum harvest age T Harvest immediately

$$W(T) = [E(P(T) - C_h]V(T) + L - E(t)$$

Denotation:

 C_h = Harvesting costs,

V(t) = Timber volume at stand age t,

L = Land value,

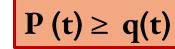
E(t) = Carbon emission tax.

If age t < T Two options:

When $R_1 > R_2$, Harvest now is preferred option!

(1) Harvest now

$$R_1 = (P - C_h)V(t) + L - E(t)$$


(2) delay the harvest one extra year

$$R_2 = (1 - \lambda(t))W(t+1)e^{-r} + \lambda(t)(S(t+1) + L) - L + D(t)$$

Optimal reservation

price
$$q(t) = \frac{(1-\lambda(t))W(t+1)e^{-r} + \lambda(t)(S(t+1)+L) - L + D(t) + E(t)}{V(t)} + C_h$$

Once q(t) is determined, the expected value of stand at age t is calculated

$$W(t) = \int_{a(t)}^{+\infty} [(P - C_h)V(t) + L - E(t)]f_t(P) dP + \int_{-\infty}^{q(t)} [(1 - \lambda(t))W(t+1)e^{-r} + \lambda(t)(S(t+1) + L) - L + D(t)]f_t(P) dP$$

After that, land value of stand at age t is calculated

$$L = W(1)e^{-r} - C$$

Model Application: Cost and Price Information

Douglas-fir in Western Oregon

- Planting Density: 740 trees/ha
- Planting cost: 494 \$/ha
- Harvesting cost: 169.5 \$/ha
- Mean timber price: 312.6 \$/cubic meter
- SD: 54.6 \$/cubic meter
- Interest Rate: 4%
- Minimum harvest age: 19 years
- Maximum harvest age: 100 years

(ODF, 2022)

Model Simulation

Wildfire Risk Assumption:

Constant Risk

$$\lambda = \frac{t_d}{50}$$

Age Dependent Risk

$$\lambda = 2t \frac{(X-t_a)}{(t_b-t_a)(t_c-t_a)} (t_a = 0, t_b = t_c = 50)$$

Parameters:

- λ (wildfire risk): 0, 0.02, 0.04
- g (salvage): 0.3, 0.5, 0.7
- β (long-lived wood): 0.7, 0.8, 0.9
- Carbon prices: \$15, \$25, \$35

81 Scenarios

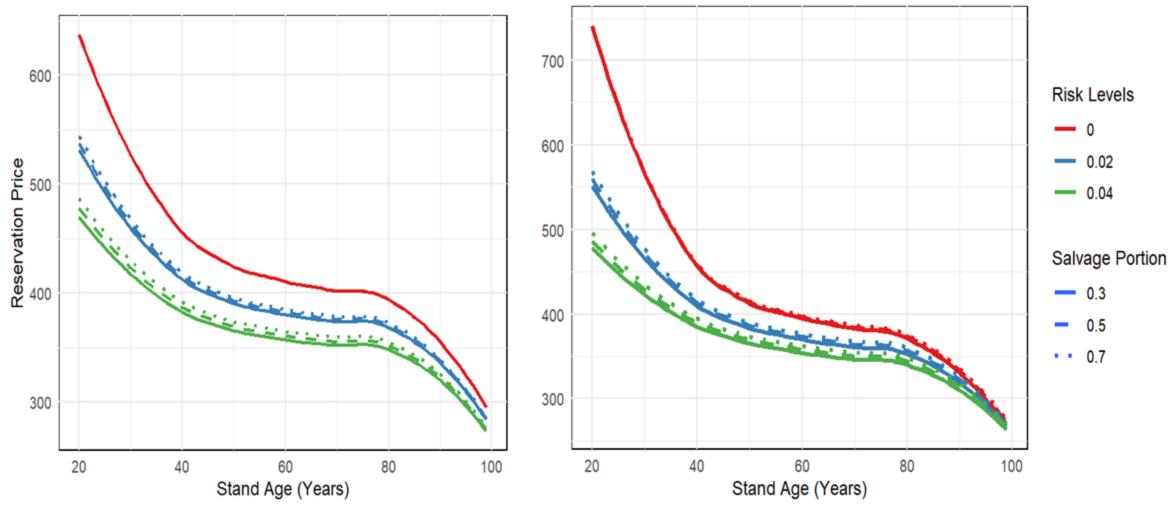


Fig 1: Optimal reservation prices under different risk levels (a) Constant risk (b) Age-dependent risk



Fig 2: Harvest probability across stand ages under different risk levels(a) Constant risk (b) Age-dependent risk

Table 2: Land value (L), mean harvest age with different wildfire risk levels and salvage portions related to reservation price strategy.

Salvage P Land Value (\$/ha)	Ortion (0.3) Mean harvest age	Salvage Po Land Value	ortion (0.5) Mean	Salvage Portic Land Value	on (0.7) Mean
Value	harvest age		Mean	Land Value	Mean
(4)	(yr)	(\$/ha)	harvest age (yr)	(\$/ha)	harvest age (yr)
14,104.3	65.2	14,104.3	65.2	14,104.3	65.2
8,990.2	39.8	9,194.8	40.2	9,404.5	40.6
5,878.8	23.4	6142.2	23.9	6414.1	24.5
4,858.8	56.3	5,335.8	56.3	5,814.5	56.3
7,014.6	49.2	7,272.1	49.8	7,538.8	50.6
9,124.2	43.5	9,187.8	44.5	9,260.5	45.6
	8,990.2 5,878.8 4,858.8 7,014.6	8,990.2 39.8 5,878.8 23.4 4,858.8 56.3 7,014.6 49.2	8,990.2 39.8 9,194.8 5,878.8 23.4 6142.2 4,858.8 56.3 5,335.8 7,014.6 49.2 7,272.1	8,990.2 39.8 9,194.8 40.2 5,878.8 23.4 6142.2 23.9 4,858.8 56.3 5,335.8 56.3 7,014.6 49.2 7,272.1 49.8	8,990.2 39.8 9,194.8 40.2 9,404.5 5,878.8 23.4 6142.2 23.9 6414.1 4,858.8 56.3 5,335.8 56.3 5,814.5 7,014.6 49.2 7,272.1 49.8 7,538.8

Table 3: Mean harvest age under different carbon prices

Risk	Carbon Price (\$/tCO2e)	Mean Harvest Age (year)
Constant Risk		
	15	64.9
	25	65.2
	35	65.4
Age-dependent	risk	
	15	56
	25	56.3
	35	56.6

Discussion: Key Takeaways

Mildfire Risk Accelerates Harvests
Age-dependent risk especially cuts land value
and shortens optimal harvest age.

Salvage Logging Softens the Blow Higher salvage portions (up to 70%) help recover timber value post-fire.

Perception Shapes Behavior
Landowners act on both actual and perceived wildfire risk.

Adaptive Management is Essential Flexibility is key to balancing profit, carbon goals, and resilience.

References

- Adams, D. M., & Haynes, R. W. (1980). The 1980 softwood timber assessment market model: structure, projections, and policy simulations. *Forest Science*, 26.
- Amacher, G. S., Malik, A. S., & Haight, R. G. (2005). Forest landowner decisions and the value of information under fire risk. *Canadian Journal of Forest Research*, 35(11), 2603-2615.
- Amacher, G. S., Ollikainen, M., & Koskela, E. (2009). *Economics of forest resources* (p. 424). Cambridge: Mit Press.
- Beschta, R. L., Rhodes, J. J., Kauffman, J. B., Gresswell, R. E., Minshall, G. W., Karr, J. R., & Perry, D. A. (2004). Postfire management on forested public lands of the western United States. *Conservation Biology*, 18(4), 957–967.
- Brazee, R. J., & Mendelsohn, R. (1988). Timber harvesting with fluctuating prices. *Forest Science*, 34(2), 359–372.
- California Air Resources Board. (2015). Compliance Offset Protocol: U.S. Based Forests. Sacramento, CA: California, Environmental Protection Agency.
- Faustmann, M. (1849). On the determination of the value which forest land and immature stands possess. Journal of Forest Economics, 1(1), 7–44.
- Gong, P. (1999). Optimal harvest policy with first-order autoregressive price process. Journal of Forest Economics, 5(3), 413–439.

References

- Gong, P., Boman, M., & Mattsson, L. (2005). Non-timber benefits, price uncertainty and optimal harvest of an evenaged stand. Forest policy and economics, 7(3), 283-295.
- Gong, P., & Löfgren, K. G. (2007). Market and welfare implications of the reservation price strategy for forest harvest decisions. *Journal of forest economics*, 13(4), 217-243.
- Hartman, R. (1976). The harvesting decision when a standing forest has value. Economic Inquiry, 14(1), 52–58.
- Haynes, R. (2005). Will markets provide sufficient incentive for sustainable forest management?. US Department of Agriculture Forest Service General Technical Report PNW, 626, 13.
- Hurteau, M. D., Hungate, B. A., & Koch, G. W. (2009). Accounting for risk in valuing forest carbon offsets. Forest Policy and Economics, 109, 101987.
- Reed, W. J. (1984). The effects of risk of fire on the optimal rotation of forest stands. *Journal of Environmental Economics and Management*, 11(2), 180–190.
- Susaeta, A., & Gong, P. (2019). Risk and uncertainty in forest investment decisions: A dynamic programming approach. *Forest Policy and Economics*, 109, 101994.
- Van Kooten, G. C., Binkley, C. S., & Delcourt, G. (1995). Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. American Journal of Agricultural Economics, 77(2), 365–374.
- Wang, Y., & Lewis, D. J. (2024). Wildfires and climate change have lowered the economic value of western US forests by altering risk expectations. Journal of Environmental Economics and Management, 123, 102894.

Thank you!

Contact: kyawh@oregonstate.edu