Quantifying Stand Density-Growth Relationship Across Contrasting Forests Types of the Continental United States

Emmerson Chivhenge, Aaron. R. Weiskittel, Christopher. W. Woodall, David. G Ray & Anthony. W. D'Amato

Growth, Removals and Mortality (GRM)

- Increase in size and biomass of trees in a stand over time
- Competition main driver
- Types of growth

Gross growth: all growth including mortality Net growth: gross growth-mortality Mortality: trees dying from natural causes

Stand Density Index (SDI)

• Biologically based measure of SD

independent of site and stand age

- Maximum SDI: carrying capacity (#/ha)
- Relative Density= SDI/SDImax (0-1)

predicts phases of stand development

management decisions

Relative density	Stage of stand development	
0.15	Crown closure	
0.30	Lower bound of density management zone	
0.55	Onset of imminent competition mortality	
1	Maximum size-density	

PERFECTING A STAND-DENSITY INDEX FOR EVEN-AGED FORESTS¹

By L. H. REINEKE

Associate Silviculturist, California Forest Experiment Station, Forest Service, United States Department of Agriculture

perfecting a stand-density index for even- aged forests

by LH REINEKE · Cited by 2481 — It is the purpose of this paper to present a **stand-density index** which does not require a yield table and which is not affected by possible errors in shap 12 pages

Integration of relative density

Spruce-Fir (Weiskittel and Woodall 2023)

Theoretical density relationships

- Production forestry aims at identifying a density where trees to sustainably maximize growth
- No consensus on the density-growth relationships and definitions
- Better quantitative models to represent density-growth relationships

Density \rightarrow

Site \rightarrow Regional \rightarrow National Scale

MDPI

USA

Natural Resource Modeling

RESEARCH ARTICLE 👌 Open Access 🛛 😨 💽

Pacific Northwest conifer forest stand carrying capacity under future climate scenarios

Ryan R. Heiderman 🔀 Mark J. Kimsey Jr.

findawi Publishing Corporation nternational Journal of Forestry Research /olume 2010, Article ID 212068, 8 pages oi:10.1155/2010/212068

Research Article

Rapid Assessment of Relative Density in Mixed-Species Stands of the Northeastern United States

M. J. Ducey and R. A. Knapp

FOREST ECOLOGY AND MANAGEMENT

\$97

Variation in the maximum stand density		
index and its linkage to climate in mixed		
species forests of the North American		
Acadian Region		

Caitlin Andrews a b	🖾 . Aaron Weiskittel	^a . Anthony W. D'Amato ^c	Frin Simons-Leagard a
	,	,,	,

Site sensitive maximum stand density index models for mixed conifer stands across the Inland Northwest, USA

Mark J. Kimsey Jr. Ӓ 🖾 , Terry M. Shaw, Mark D. Coleman

Journal of Forestry, 2023, 121, 443-456	
https://doi.org/10.1093/jofore/fvad029	
Advance access publication 21 July 2023	
Research Article - silviculture	

Relative Density as a Standardizing Metric for the **Development of Size-Density Management Charts**

David Ray,110 Robert Seymour,1 Shawn Fraver,1 John-Pascal Berrill,2 Laura Kenefic, Nicole Rogers,¹ and Aaron Weiskittel²

Evaluating Stand Density Measures for Regulating Mid-Rotation Loblolly Pine Plantation Density in the Western Gulf, USA

Yuhui Weng 1,*0, Dean Coble 2, Jason Grogan 1, Chen Ding 30 and Xiongwei Lou 4

Quantifying minimum site occupancy requirements of common forest tree species in northern New England, USA: Implications for stocking assessment

David Ray ° 1 📯 🖾 , Robert Seymour °, Shawn Fraver °, John-Pascal Berrill ^b, Laura Kenefic ^c, Nicole Rogers ^a, Aaron Weiskittel ^d

ARTICLE

ente este este

Forest Ecology

Management

A species-specific, site-sensitive maximum stand density index model for Pacific Northwest conifer forests¹ Ryan R. Heiderman and Mark J. Kimsey, Jr.

A stand density index for complex mixed species forests in the northeastern United States

Mark J. Ducey 🖄 🖾 , Rachel A. Knapp 🖾

Science

Effect of stand densities on stand dynamics in white fir (Abies concolor) forests in northeast California, USA

Jianwei Zhang*, William W. Oliver, Martin W. Ritchie USDA Forest Service, Pacific Southwest Research Station, 3644 Avtech Parkway, Redding, CA 96002, United States Received 18 January 2007; received in revised form 21 March 2007; accepted 23 March 2007

scientific reports

Relative density of United States OPEN forests has shifted to higher levels over last two decades with important implications for future dynamics

scientific reports

Denser forests across the USA OPEN experience more damage from insects and pathogens Christopher Asaro 31,4. Frank H. Koch 3,4 & Kevin M. Potter 2,3

Forest Ecology and Management Volume 226, Issues 1–3, 1 May 2006, Pages 368-372

Check for updates

Check for updates

Short communication The relative density of forests in the United States

Christopher W. Woodall 📯 🖾 , Charles H. Perry, Patrick D. Miles

Forest Ecology and Management Volume 216, Issues 1-3, 12 September 2005, Pages 367-377

Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments

Chris W. Woodall 🙁 🖾 , Patrick D. Miles, John S. Vissage

Introduction

Growth	Density
Volume (total vs merchantable)	Basal area
	Relative density (SDI, Standardized SDI,
Biomass	RD, Relative spacing)
Carbon (total carbon vs annual average)	Trees per hectare

- Gross=live + removal+ mortality (tC/ha/yr)
- Net=live + removal (tC/ha/yr)
- RD=SDI/SDImax

Overarching questions

- 1. Is there a breakpoint/ change point in the relationship between gross and net growth?
- 2. If there is a change point, what is the sign and magnitude of the breakpoint?
- a) Does growth increase after the breakpoint?
- b) Does growth show an optimal level after the breakpoint?
- c) Does growth decline after the breakpoint?
- 3. Do we have breakpoints of the same forest types/ecoregions in the same clusters?
- 4. What are the potential drivers of the different density-growth relationships?

Forest Inventory and Analysis (FIA) data

Citations: USDA, (2005); Janowiak et al, (2017); Domke, (2023)

Workflow

10

RESULTS: Test for slope differences

Growth metric	'Best' at estimate	Adjusted p-value
Gross growth	0.56	2.2e-16
Net growth	0.56	2.2e-16

Gross growth-RD relationships across forest types

Breakpoint: 0.52 (CI: 0.51-0.54)

Clustering of gross growth RD across forest types

Results: Net growth-RD across ecosubsections

Breakpoint: 0.51 (CI: 0.50-0.52)

Clusters of RD breakpoints across ecosubsections

Potential drivers of density growth relationships

Conclusions

• Gross and net growth linearly increased with RD up to a breakpoint of 0.51-0.55 beyond which the relationship became more asymptotic

• Asymptotic nature of the relationship supports the Langsaeter hypothesis.

• Limited number of clusters optimally determined from the identified breakpoints

Conclusions

• RD is a reliable predictor of gross and net growth exhibiting logical behavior across a range of conditions, yet a substantial amount of unexplained variation remained

• Stand structure and density are the potential dominant drivers for density-growth relationships

THANK YOU

???QUESTIONS???

• email: emmerson.chivhenge@maine.edu

Mean decrease Gini (IncNodePurity index)

