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The Problem:
Forest decisions—like harvest planning, habitat protection, and carbon accounting—require highly 
localized data (e.g., tree sizes, species mix, biomass). But:

Typical stands have only 1-2 measurement plots

Many stands have no measurements at all

Plots often miss stand variability (density changes, gaps, microsites)

Exhaustive sampling is financially impossible at operational scales

While remote sensing (free/low-density LiDAR) provides landscape-scale data, it cannot 
directly measure  critical variables like diameter distributions



Why Small Area Estimation (SAE)?

SAE enables reliable estimation in small domains where traditional approaches lack 
precision. SAE effectively “borrows strength” from auxiliary data (e.g., LiDAR, NAIP, Sentinel-
2) to improve predictions even when sample sizes are small.

Stand-level forest metrics (e.g., diameter class distributions) require robust, interpretable, and 
flexible modeling approaches that can handle complex stand heterogeneity.

Common issues: skewed data, outliers, complex correlation

Traditional methods fail to produce precise estimates of diameter distributions at the 
stand level due to:

Small or unbalanced sample sizes
Complex stand structures (e.g., mixed species, irregular distributions)



The SAE Advantage:

SAE fills the gaps by intelligently blending:

Limited field measurements (e.g., 1-2 plots per stand)
Auxiliary data (LiDAR, climate, soil maps)
Statistical models to ensure reliability

Why Current Methods Fall Short:

•Inadequate Sample Sizes
•Rigid Distributional Assumptions
•Parametric Model Constraints
•Fails to capture nonlinear covariate interactions and hierarchical 

structures

This project advances SAE through robust model-based techniques integrated with machine learning



IntroductionSAE in Forest Inventories

Small area estimation (SAE) refers generally to approaches for making population-
level estimates within small domains for which sample sizes are deemed inadequate 
to produce estimates of acceptable precision using traditional design-based 
techniques. 

“The term ‘small area estimation' is somewhat confusing because it's the size of the sample 
from the area that causes estimation problems, not size of the area.” 

Pfeffermann (2013) 



The term Small Area Estimation refers to a number of methods that rely on ancillary 
data sources in order to “borrow” additional information, increasing the effective 
sample size – and consequently, the precision of the estimates – for the selected 
domain.

Introduction

Design-based inference 
automatically accounts for 
the survey design but has 
limited ability to leverage 
ancillary information and 
deliver precise estimates for 
small sample sizes (i.e., 
small area estimates). 

Model-based inference 
explicitly consider the 
design and data jointly but 
can use ancillary 
information and borrow 
from the rich modeling 
literature to deliver robust 
inference for small samples 
sizes. 



Model based small area estimation are broadly classified into two groups:

• Unit level random effect models, proposed originally by Battese et al.(1988). These models 
relate the unit values of a study variable to unit-specific covariates.

• Area level random effect models, which are used when auxiliary information is available only at 
area level. They relate small area direct survey estimates to area-specific covariates (Fay and 
Herriot, 1979).

Introduction



Hypotheses or Objectives



Study Regions & Data Integration

Geographic Scope: Mixed conifer forests (PNW: FS Regions 1, 4, 6, Rockies) 
and even-aged southern pine plantations (FS Region 8).

Methods

Ground Data Sources: 

 Industrial CFI data (PotlatchDeltic, 

Green Diamond, Manulife) 

 NFS stand exams

 FIA plots (benchmark)

Auxiliary Variables:

 3D-NAIP PC & Ortho Imagery, 

 ClimateNA – (Annual, Month, Season), 

 Geology and Soil layer - (SGMC & 

gSSURGO geodatabase),

 Topography extraction from 30m DEM 

(Slope, Aspect, Topographic wetness 

index, Solar radiation)

SAE Domains: Stand-level (Area level SAE Models)



Objective 1 – Univariate 
SAE Models

• Base: Fay-Herriot 
model with area-level 
covariates

• Robust variants: OBP, 
M-quantile, 
transformed response

• ML plug-in estimators 
integrated within SAE

• Parameter recovery: 
Weibull, Johnson SB, 
Finite Mixture Models 
(FMM)

Objective 2 –
Multivariate SAE 

Models

• Multivariate Fay-Herriot 
for correlated diameter 
indices

• Joint estimation for 
efficiency and shared 
strength

• Transform responses 
counts by diameter 
class 
(Poisson/lognormal)

Objective 3 – ML-Based 
Synthetic SAE

• Multi-output RF, 
XGBoost, Neural 
Networks for stem 
density by diameter 
class 

• Mixed Effects RF 
(MERF), Random 
Weight NNs

• Clustered ML for 
hierarchical stand 
structure

Objective 4 – Model 
Evaluation & 
Uncertainty

• Bootstrap and analytic 
MSE estimators

• Validation via stand 
exams and simulation

• Metrics: RMSE, MAE, 
MAPE, AIC, adj. R², 
residual diagnostics

Methods



Progress 2024-25

Forest Inventory Data: Engaged with industry partners, public land managers, and research 
networks to compile data across the Pacific Northwest and Southeast U.S.

Auxiliary Data: Leveraging publicly available datasets and initiating procurement of 3D NAIP 
products via project collaborations.

Southern U.S. Identified three AOIs (~600 km² each) in Arkansas, Mississippi, and South Carolina - high industry stand exam 
coverage facilitated by Green Diamond and PotlatchDeltic



Progress 2024-25
Initial Implementation Area: Idaho AOI’s

•St. Joe National Forest

Extensive coverage from PotlatchDeltic and Idaho Department of Lands (IDL) industrial 

forests.

•Moscow Mountain

Includes UI Experimental Forest for validation and field calibration.

LiDAR Preprocessing Workflow

Steps: Noise filtering → Ground classification → Normalization → Metric gridding → Canopy surface modeling

Outputs: Stand-level auxiliary variables



Progress 2024-25

Colorized 3D NAIP Point Cloud (GSD: 30 cm, Frame Sensor)



Progress 2024-25



Structural Metrics from LiDAR

Height (HAG/HABS): 

Max, Mean, SD, CV, Skew, Kurtosis, Q05–Q95, 
Min/Max

Canopy Structure:

Canopy Cover (Total, Percentiles), Density ≥2–
20 m, VCI, UCI, GFP, Canopy Relief Ratio, Foliage 
Height Diversity

Complexity & Stratification:

CCI, Height Evenness/Stratification, Taller Tree 
Dominance, Height-Weighted Density, Density–
Height Ratio, Tall Stem Skew, Canopy Closure Proxy

Spectral & Environmental Covariates

Ortho imagery :

Vegetation: NDVI, GNDVI, NDWI, SAVI, EVI
Color: ExG, VARI, GRVI, NGRDI, TGI
Normalized Bands: R_norm, G_norm, B_norm

Terrain (30 m DEM):

Slope, Aspect, TWI, Solar Radiation

Climate (ClimateNA):

Annual, monthly, and seasonal

Soils & Geology:

gSSURGO & SGMC 

Progress 2024-25



Initial Target Variable: Quadratic Mean Diameter (QMD)

As an initial step, we focus on Quadratic Mean Diameter (QMD) — a widely used stand-level metric 
that effectively summarizes the central tendency of tree diameter while accounting for basal area.

QMD is especially valuable in forest inventory and modeling because it reflects both the size and 
distribution of trees within a stand, making it a representative and interpretable indicator of 
diameter structure.

Progress 2024-25

Feature Selection & Modeling Pipeline

Step Purpose

1. VarianceThreshold Removes low-information numeric features

2. OneHotEncoding Handles categorical variables

3. Correlation Filter Removes highly correlated variables

4. Mutual Information Selects best from each correlated pair

5. VIF Filter Reduces multicollinearity

6. LassoCV Final feature selection



Model Method Estimation Strategy Proposed By / Citation Purpose & Strengths

M1 reml
Restricted Maximum 
Likelihood

Rao & Molina (2015), Prasad & 
Rao (1990)

Common default. Reduces small-sample 
bias vs ML. Stable fixed effect estimation.

M2 ml
Maximum Likelihood Fay & Herriot (1979) Direct likelihood optimization. Slightly 

biased in small samples but efficient.

M3 amrl
Adjusted ML – Random 
Effects Level

Marhuenda, Molina & Morales 
(2013)

Reduces bias in random effect variance. 
Improves small-area accuracy.

M4 ampl
Adjusted ML – Prediction 
Level

Marhuenda et al. (2013) Improves prediction MSE by adjusting 
variance at prediction level.

M5 amrl_yl
Adjusted ML with Y-link 
Transformation

Marhuenda et al. (2014) Handles heteroscedasticity; transforms 
response for better normality.

M6 ampl_yl
Adjusted Prediction Level + 
Y-link

Marhuenda et al. (2014) Balances transformed modeling and bias 
correction at prediction level.

M7 reblup
Robust EBLUP Sinha & Rao (2009) Incorporates robustness against outliers in 

small areas.

M8 reblupbc
Robust EBLUP with Bias 
Correction

Molina et al. (2017) Adds bootstrap-based bias correction to 
improve inference.

M9 PCA + 
Stepwise

Principal Component 
Regression

Jolliffe (2002), adapted in SAE by 
Tzavidis et al. (2016)

Condenses correlated features into 
orthogonal PCs. Reduces dimensionality 
without loss of information.



Major Findings

Well-performing models:

 REML (M1) & Adjusted ML (M3–M6): Stable estimates, high explanatory power 

(FH_R² ≈ 0.95), low MSE, good for general applications.

 PCA + Stepwise ML (M9): Achieved best AIC (646.37), showing value of feature 

reduction.

 REBLUP/REBLUPBC (M7–M8): Robust against outliers, delivering high-precision 

coefficients and stable inference under non-normality.



Model Generalization: Validating current models on unseen domains or bootstrap samples will 
reveal if SAE methods overfit. ML-based models can be tuned for generalization with cross-validation 
or out-of-sample testing.

Hybrid Approaches: Emerging research shows combining SAE with ML (e.g., random forest 
residual correction, neural-net variance modeling) improves prediction in real-world small areas.

 Most influential predictors across methods: Cruise Design, Canopy Height Metrics, Soil and 
Drought Variables  repeatedly significant and strong in effect size.

Residuals & Diagnostics:  Good fit, but residual skewness/kurtosis and some non-normal random 
effects suggest opportunities for improvement.

Major Findings

Work in progress



Future Plans
Next Steps & Future Directions

Beyond QMD — Toward Full Diameter Distributions

•Current phase focused on Idaho & univariate QMD.

•Forest applications need full diameter distributions, not just summary stats.

Upcoming Objectives

Multivariate SAE for joint modeling of moments/percentiles.

 Diameter class estimation using multi-output regression.

ML-based SAE to handle nonlinearity, interactions, and hierarchical data.

 Validation on external datasets (FIA, CFI); empirical simulation testing.

 Advanced feature selection (e.g., mRMR, embedded ML techniques).



Summary

 Objective: Improve stand-level diameter estimates using robust SAE and machine 

learning.

 Challenge: Sparse field data; complex forest structure.

 Solution: Fuse LiDAR, NAIP, soils, and climate data with flexible, interpretable 

models.

 Progress: High-accuracy QMD predictions (R² ≈ 0.95); key features include 

canopy metrics & site factors.

 Impact: Reliable, scalable tools for partners to support planning, inventory, and 

reporting.

 Next: Extend to full diameter distributions with multivariate and ML-based SAE.
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