

Comparison of Maximum Stand Density Index (SDI) in Genetically Improved and Unimproved Douglas-fir

¹Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, Corvallis, OR ²Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, Corvallis, OR

Sukhyun Joo¹, Doug Mainwaring¹, Temesgen Hailemariam¹, Keith Jayawickrama², and Terrance Ye²

Western Mensurationists Conference

Moscow, ID

June 16, 2025

• Genetic improvement in Douglas-fir has emphasized breeding-zone matching, faster growth, better form, and improved wood quality.

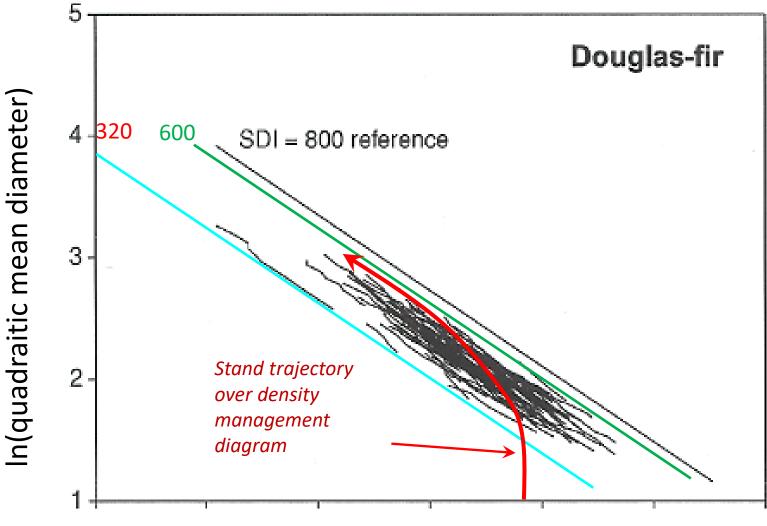
• The influence of genetic gain on stand carrying capacity is less well understood, yet it directly informs planting density, thinning schedules, and rotation length.

Maximum Stand Density Index (SDI_{MAX})

- "Managed stands are seldom allowed to develop along the actual selfthinning line, at least once they have reached a commercial size. This presents a challenge to observing maximum levels of competition and assessing their influence on productivity". (Chivhenge et al. 2024)
- SDI_{MAX} defines the upper boundary of the size-density relationship under intense competition.

Evidence from Other Species

- Loblolly pine Walker et al. (2020)
 - Lost Pines provenance had a higher predicted carrying capacity than Atlantic Coastal Plain stock
 - But showed slower growth and poor form.


Growth and Yield Models Insights

- Fertilization effect in ORGANON/CIPSANON
 - Nitrogen additions increased diameter and height growth rates, but does not raise the intercept of the SDI_{MAX} line.
 - Faster growth pushes the stand along its existing size density trajectory more quickly
 - Sukachev effect
 - As a result of Sukachev effect, mortality rate increases with fertilization treatment.

Objective

To test whether SDI_{MAX}
increases for genetically
improved Douglas-fir.

In(trees per acre)

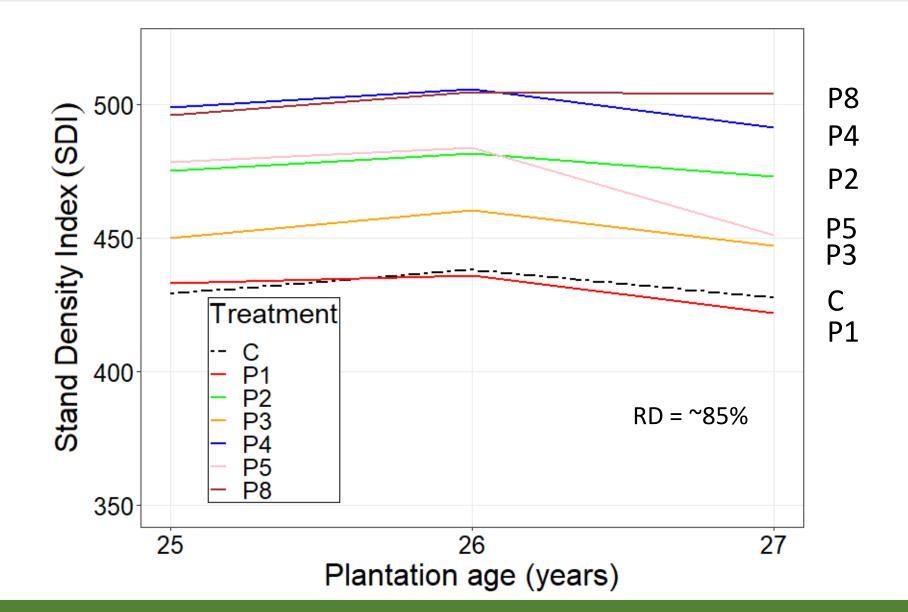
Materials

- Molalla realized gain trials
- Three genetic improvement levels
 - Elite
 - Intermediate
 - Woods-run (control)
- Measured DBH at plantation age 26 and 27 years
 - ~10,600 trees
 - Only 6-ft spacing plots
 - SDI = 443
 - Relative density = > 80%

Experimental design

- Split plot design
 - Whole Plot: planting density
 - Split Plot: genetic level
- Three genetic improvement levels
 - Elite
 - Intermediate
 - Woods-run (control)
- Elite & Intermediate
 - Single pair matings of 20 parents (10 families)
- Woods-run (control)
 - Random selection of 50 trees
- 100 trees/plot (10 x 10)

3 × 1.8 m (6 × 6-ft)	3.6 × 3.6 m (12 × 12-ft)		
Elite			
ntermediate	Elite		
Woods-run	Intermediate		
	Woods-run		


 The whole Colton site and some other plots were excluded in this study due to ice and snow damages

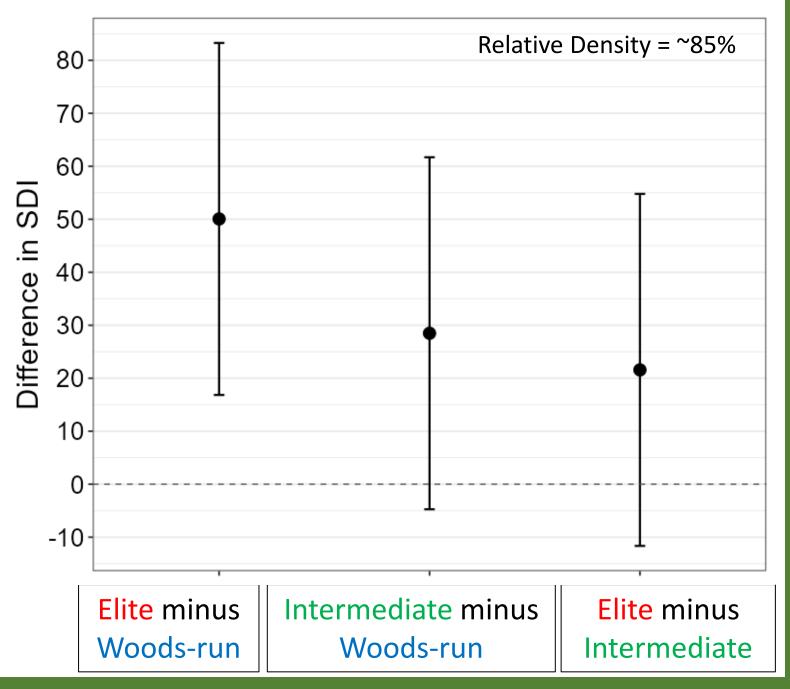
	Elite	Intermediate	Woods-run
Site	127.3	128.5	125.7
index (ft)	(103 – 143)	(109 – 154)	(103 – 144)

SDI in family deployment study

Results

- From Molalla realized gain trials

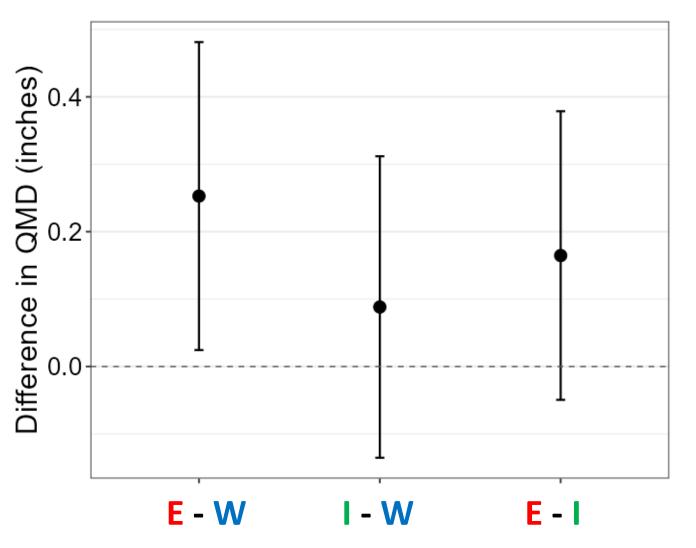
- Stand Density Index (SDI)
 - The number of trees (TPA) when quadratic mean diameter (QMD) is 10 inches.


$$SDI = TPA \cdot \left(\frac{QMD}{10}\right)^{1.605}$$

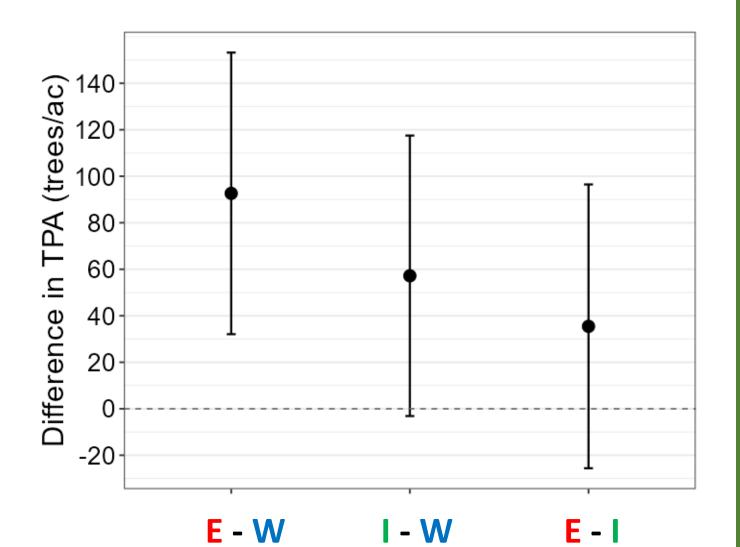
where,

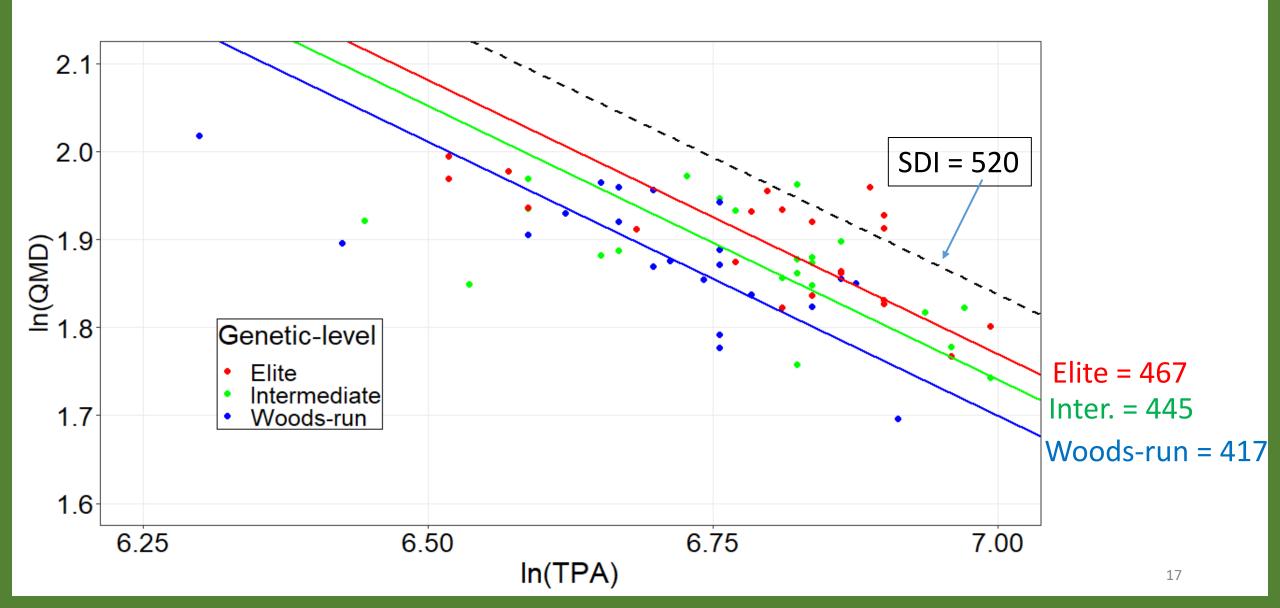
- SDI = Stand Density Index
- TPA = Number of trees per ace
- QMD = Quadratic Mean Diameter (inches)

- Stand density index (SDI) difference by genetic-level
 - Elite minus Intermediate
 - Elite minus Woods-run
 - Intermediate minus Woodsrun
- SDI = f(site, genetic, site*genetic) + ε
- 95% confidence interval


SDI: the number of trees (TPA) when quadratic mean diameter (QMD) is 10 inches.

Quadratic Mean Diameter


- QMD = f(site, genetic, site*genetic, TPA) + ε
- 95% confidence interval
- Significant QMD difference between Elite and Woods-run


Trees per acre

- TPA = f(site, genetic, site*genetic, QMD) + ε
- 95% confidence interval
- Significant TPA difference between Elite and Woods-run

QMD vs. TPA

Results

- Increasing maximum carrying capacity for genetically improved Douglas-fir
 - Molalla realized gain trials (at ages 26 and 27)
 - Elite compared to Woods-run (on average)
 - 50 SDI gains \rightarrow 12.0% SDI gains
 - 0.25 inches QMD gain \rightarrow 11.3% QMD gains
 - 93 TPA gain \rightarrow 3.9% TPA gains
 - Intermediate compared to Woods-run
 - Marginal SDI and TPA gains

Test with ORGANON/CIPSANON equations

Research Contribution 40

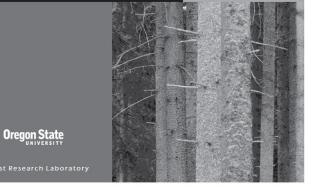
EQUATIONS FOR PREDICTING HEIGHT-TO-CROWN-BASE, 5-YEAR DIAMETER-GROWTH RATE, 5-YEAR HEIGHT-GROWTH RATE, 5-YEAR MORTALITY RATE, AND MAXIMUM SIZE-DENSITY TRAJECTORY FOR DOUGLAS-FIR AND WESTERN HEMLOCK IN THE COASTAL REGION OF THE PACIFIC NORTHWEST

by

David W Hann David D Marshall Mark L Hanus

June 200

Hann et al. (2003)


Research Contribution 4

FOR DIAMETER-GROWTH RATE, HEIGHT-GROWTH RATE, AND MORTALITY RATE OF DOUGLAS-FIR by David W Hann David D Marshall Mark L Hanus

REANALYSIS OF THE SMC-

ORGANON EQUATIONS

November 2006

Hann et al. (2006)

• LT_i

Model for stands at maximum density

• Reineke (1933)

 $MLQ_i = a_1 + a_2 LT_i$

- *MLQ_i* = natural log of maximum QMD at the *i*th measurement for a given number of trees per acre
 - = natural log of number of trees per acre at the *i*th measurement

• *LT*

• Genetic effect + random intercept

 $LQ = (b_1 + b_{1,E}I_{Elite} + b_{1,I}I_{Inter}) + b_2LT + u_{site} + u_{block(site)}$

- = Natural log of number of trees per acre at the same measurement
- *I_{Elite}* = Indicator variable (1 when Elite; 0 otherwise)
- *I*_{Inter} = Indicator variable (1 when Intermediate; 0 otherwise)
- u_{site} = Random intercept for each site, $u_{site} \sim N(0, \sigma_{site}^2)$
- $u_{block(site)}$ = Random intercept for each block within site, $u_{block} \sim N(0, \sigma_{block}^2)$

Our maximum size density trajectories

• Hann et al. (2003)

$$LQ = (g_1^* + g_2LT) - \frac{[(g_1^* g_2) g_4]^2}{g_1^* + g_2LT_1 - LQ_1} e^{-g_3(LT_1 - LT)}$$

$$g_{1}^{*} = (g_{1} + u_{site} + u_{block(site)} + g_{1,E} I_{Elite} + g_{1,I} I_{Inter})$$

- LQ = Natural log of QMD
- *LT* = Natural log of number of trees per acre at the same measurement
- LQ_1 , LT_1 = Natural log of QMD and TPA for the first measurement on the plot

• Followed Hann et al. (2003)

 $LQ + 0.62305 \cdot LT = h_0 + h_{1,E} I_{Elite} + h_{2,I} I_{Inter} + u_{site} + u_{block(site)}$

• The slope of -0.62305 is the reciprocal of Reineke's (1933) Stand Density Index slope of -1.605, representing the maximum size-density relationship for Douglas-fir.

Results – Maximum density line

$$LQ = (b_1 + b_{1,E}I_{Elite} + b_{1,I}I_{Inter}) + b_2LT + u_{site} + u_{block(site)}$$

Parameter	Estimate	Std. Error	P-value
b_1	3.3938	0.2130	< 0.0001
b _{1,E}	<mark>0.0285</mark>	<mark>0.0085</mark>	<mark>0.0011</mark>
b _{1,I}	<mark>0.0136</mark>	<mark>0.0088</mark>	<mark>0.1235</mark>
b_2	-0.2247	0.0317	< 0.0001

Results – maximum size density trajectories

$$LQ = (g_1^* + g_2LT) - \frac{[(g_1^* g_2) g_4]^2}{g_1^* + g_2LT_1 - LQ_1} e^{-g_3(LT_1 - LT)}$$

$$g_1^* = (g_1 + u_{site} + u_{block(site)} + g_{1,E}I_{Elite} + g_{1,I}I_{Inter})$$

Parameter	Estimate	Std. Error	P-value
g_1	4.5533	0.5450	< 0.0001
$g_{1,E}$	<mark>0.0391</mark>	<mark>0.0153</mark>	<mark>0.0122</mark>
<mark><i>g</i>_{1,},</mark>	<mark>0.0240</mark>	<mark>0.0156</mark>	<mark>0.1265</mark>
g_2	-0.3993	0.0829	< 0.0001
g_3	-9.2673	3.3258	0.0065
g_4	-0.1441	0.0307	< 0.0001

 $LQ + 0.62305 \cdot LT = h_0 + h_{1,E} I_{Elite} + h_{2,I} I_{Inter} + u_{site} + u_{block(site)}$

Parameter	Estimate	Std. Error	P-value
h_0	6.0627	0.0137	< 0.0001
$h_{1,E}$	<mark>0.0427</mark>	<mark>0.0137</mark>	<mark>0.0025</mark>
h _{2,I}	<mark>0.0327</mark>	<mark>0.0141</mark>	<mark>0.0223</mark>

- Elite showed 6.5% SDI_{MAX} gain
- Intermediate showed 5.1% SDI_{MAX} gain

Simulation

- In ORGANON/CIPSANON the default $\mathrm{SDI}_{\mathrm{MAX}}$ for Douglas-fir is 520.
- With genetic SDI_{MAX} gain,
 - Elite = 554
 - Intermediate = 547
- Simulations with and without $\mathrm{SDI}_{\mathrm{MAX}}$ gain
- There was no economical significance
 - Simulations to age 60 showed < 1 bf/ac difference in volume when only SDI_{MAX} was altered, suggesting limited economic benefit.

Conclusion

- Genetic improvement increases SDI_{MAX} :
 - +6.5 % for Elite, +5.1 % for Intermediate families.
- Despite the higher SDI_{MAX}, simulations indicate minimal volume gain at conventional rotation ages (~50 years).
- Further simulation work is needed to test volume gains from early stand development through biological rotation, using a range of SDI_{MAX} values
 - SDI = 350, 450, and 520
 - Try genetic effects into mortality rate equation (ORGANON/CIPSANON)

Thanks for your attention!

sukhyun.joo@oregonstate.edu